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Abstract 

In this paper, a command filtered fault-tolerant control (CFFTC) approach is investigated for induction 
motors (IMs) discrete-time system in the presence of actuator faults and unknown load disturbances. 
Firstly, the IMs system discrete-time model is obtained by Euler method. Then, the fuzzy logic systems 
(FLSs) is utilized to compensate for unknown actuator faults. Besides, introducing the error compensation 
mechanism into discrete-time systems via command filters, “complexity of computation” and noncausal 
problem can be conquered, and the filtering error is avoided concurrently. Finally, simulation results 
demonstrate the validity of the presented fault-tolerant method for IMs system. 
© 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

During the past decade, the comprehensive performance of induction motors had been
otably improved with the rapid development of power electronics [1] . Due to its reliable
haracteristics, simple structure and convenient maintenance, induction motor is extensively
pplied in industrial and agricultural production [2] . Nevertheless, resulting from power grid
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isturbances and power transistors failure, actuator faults deteriorate control performance and
ven generate disastrous accidents in the operation of motors [3,4] . In addition, the driver
ystems of IMs possess complex characteristics such as multivariable, strong couplings, severe
onlinearity, unknown load disturbances and uncertain parameters [5] . Therefore, the research
f fault-tolerant control technologies for IMs is be of essentiality, which ensures the position
racking performance by compensating for the actuator faults. 

During the past years, numerous fault-tolerant control schemes [6–9] were proposed
ith the adaptive control method [10–13] and universal approximators of neural networks

14–16] or fuzzy logic systems [17–21] . Among these works, an observer-based fault de-
ection and isolation (FDI) approach was presented in [9] which using various observers to
stimate the states of nonlinear state-feedback system in the presence of the actuator faults.
n [19] , an actuator failure compensation control method where the actuator failures were
ompensated by using fuzzy approximation was exploited for uncertain stochastic nonlinear
ystems. To overcome actuator faults that occur during the actual operation of motors, Chen
sed observer technology for constructing fault detection mechanism, combined with adaptive
echnology to estimate the actuators fault factors and ensure the tracking performance by
djusting or reconstructing the control law [22] . Compared with [22] , the control parameters
an be adjusted by the adaptive laws to compensate actuators fault in [23] and [24] , which
implify the structure of control system. Consequently, it is of crucial practical significance to
xtend the obtained works to a discrete-time case, which is easier to settle practical problems
25] . 

In another research field, backstepping [27,28] become one of the most effective control
ethods for dynamic nonlinear systems. Nevertheless, the noncausal problem [29] arises

uring constructing the controllers via backstepping for discrete-time system, since the virtual
ontroller contains future state information. To solve this problem, the expression of time
 + 1 was obtained by the recursion formula to represent the future information in [27] , which
ay make the design of controller more complicated. As an alternative, by dynamic surface

ontrol (DSC) approach [31,32] , the expression of time k + 1 can be approximated by dynamic
urface filters, which settles “complexity of computation” problem. However, the filtering
rrors that may degrade the accuracy of the control system arise from the filtering process,
hich has not been considered in the DSC method. Therefore, the command filtered control

CFC) method was developed in [33–35] , where the compensating signals were introduced
o restrain the filtering errors and the “complexity of computation” problem was concurrently
onquered. Until now, the combination of the fault-tolerant method and CFC approach is not
ully investigated in the IMs discrete-time system. 

Motivated by the aforementioned works, a CFFTC approach is raised for IMs system in
he presence of actuator faults and unknown load disturbances. Comparing with the existing
iterature, the main contributions of the designed method are as follows: 

(1) In face of actuator faults in IMs, this paper proposes a command filtered fault-tolerant
control approach, which updates the control parameters directly by the adaptive laws to
compensate actuators fault and makes it more applicable to implement in engineering. 

(2) Compared with [36] and [37] , the proposed method introduces the error compensation
mechanism into discrete-time systems via command filters, which not only conquers
“complexity of computation” and noncausal problem but also avoids the filtering error
and achieves higher accuracy. 
2766 



Q. Lei, J. Yu and Q.-g. Wang Journal of the Franklin Institute 358 (2021) 2765–2779 

Table 1 
The physical meaning of notations. 

Notation Physical meaning Unit 

�t the sampling period s 
θ the rotor position rad 
ω the rotor angular velocity rad / s 
ψ d the rotor flux linkage Wb 
J the rotor inertia Kg · m 

2 

T L the load torque N · m
n p the pole number / 

i q and i d the q and d axis currents A
L s and L r the inductances of stator and rotor H
L m mutual inductance H
R s and R r the resistances of stator and rotor �

2

2

A
 

a

ψ

 

w  

d

2

 

D  

t

u  
. Mathematical model and preliminaries 

.1. Discrete-time model of IMs 

ssumption 1. The saturation and iron losses in the motor are not considered [26,27] . 
In the ( d − q) axis, the IMs system discrete-time model oriented by rotor flux is described

s [25,27] : 

θ (k + 1) = θ (k) + �t ω(k) , 

ω(k + 1) = ω(k) + �t 
n p L m 

L r J 
ψ d (k ) i q (k ) − �t 

T L 
J 

, 

i q (k + 1) = i q (k) − �t 
L 

2 
m 

R r + L 

2 
r R s 

σL s L 

2 
r 

i q (k) − �t 
L m 

n p 

σL s L r 
ω(k ) ψ d (k ) − �t n p ω(k ) i d (k ) 

−�t 
L m 

R r 

L r 

i q (k) i d (k) 

ψ d (k) 
+ �t 

1 

σL s 
u 

f 
q (k) , 

 d (k + 1) = ψ d (k) − �t 
R r 

L r 
ψ d (k) + �t 

L m 

R r 

L r 
i d (k) , 

i d (k + 1) = i d (k) − �t 
L 

2 
m 

R r + L 

2 
r R s 

σL s L 

2 
r 

i d (k) + �t 
L m 

R r 

σL s L 

2 
r 

ψ d (k) + �t n p ω(k ) i q (k ) 

+ �t 
L m 

R r 

L r 

i 2 q (k) 

ψ d (k) 
+ �t 

1 

σL s 
u 

f 
d (k) . (1)

here σ = 1 − (L 

2 
m 

/L s L r ) , u 

f 
q (k) and u 

f 
d (k) are the input signals; and other notations are

efined in Table 1 . 

.2. Actuator faults model for IMs 

During the motor operation, the actuator may not function properly under various factors.
efine u(k) is the actual controller. In this paper, two faults are considered. The first one is

he loss of effectiveness and it is modelled by: 

 

f (k) = (1 − ρ) u(k) (2)
2767 
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here 0 ≤ ρ < 1 denotes the loss rate of actuator effectiveness. The second one is bias and
escribed by: 

 

f (k) = u(k) + p(k) (3)

here p(k) denotes the bounded bias function. Combining the two models, the actuator faults
an be described as: 

u 

f (k) = (1 − ρ) u(k) + p(k) . (4)

.3. The IMs system discrete-time model with actuator faults 

To simplify the above discrete-time model, define the following variables: 

 1 (k) = θ (k) , ϕ 2 (k) = ω(k) , ϕ 3 (k) = i q (k) , ϕ 4 (k) = ψ d (k) , ϕ 5 (k) = i d (k) , 

a 1 = 

n p L m 

L r J 
, a 2 = −1 

J 
, b 1 = −L 

2 
m 

R r + L 

2 
r R s 

σL s L 

2 
r 

, b 2 = − L m 

n p 

σL s L r 
, b 3 = n p , 

b 4 = 

L m 

R r 

L r 
, b 5 = 

1 

σL s 
, c 1 = −R r 

L r 
, c 2 = 

L m 

R r 

σL s L 

2 
r 

. (5)

Substituting Eqs. (4) and (5) into Eq. (1) , the IMs system discrete-time model with possible
ctuator faults can be described as: 

 1 (k + 1) = ϕ 1 (k) + �t ϕ 2 (k) , 

 2 (k + 1) = ϕ 2 (k) + a 1 �t ϕ 3 (k ) ϕ 4 (k ) + a 2 �t T L , 

 3 (k + 1) = (1 + b 1 �t ) ϕ 3 (k) + b 2 �t ϕ 2 (k ) ϕ 4 (k ) − b 3 �t ϕ 2 (k ) ϕ 5 (k ) − b 4 �t 
ϕ 3 (k ) ϕ 5 (k ) 

ϕ 4 (k) 

+ b 5 �t [(1 − ρq ) u q (k) + p q (k)] , 

 4 (k + 1) = (1 + c 1 �t ) ϕ 4 (k) + b 4 �t ϕ 5 (k) , 

 5 (k + 1) = (1 + b 1 �t ) ϕ 5 (k) + c 2 �t ϕ 4 (k) + b 4 �t 
ϕ 

2 
3 (k) 

ϕ 4 (k) 
+ b 3 �t ϕ 2 (k ) ϕ 3 (k ) 

+ b 5 �t [(1 − ρd ) u d (k) + p d (k)] . (6)

here ρq and ρd denote the loss rates of actuators effectiveness, p q (k) and p d (k) denote the
ctuators bias functions in input signals u 

f 
q (k) and u 

f 
d (k) respectively; u q (k) and u d (k) denote

he actual controllers. 

ssumption 2. The desired signals ϕ 1 d (k) and ϕ 4d (k) are known, smooth and bounded [30] .

emma 1 [12] . There exists a FLS g(k) = W 

T P (x(k)) + τ for any τ > 0, where g(k) defined
n a compact set �x is an unknown smooth function, τ is the approximation error satisfying
or | τ | ≤ ε and ε is a small positive constant. W ∈ R 

N denotes ideal constant weight vector.
 (x(k)) = 

[
P 

1 (x(k)) , P 

2 (x(k)) , . . . P 

N (x(k)) 
]T 

is a fuzzy basis function vector, which has
he following property λmax [ P (x(k)) T P (x(k))] < l . And x(k) = [ x 1 (k ) , x 2 (k ) , . . . x n (k ) ] ∈ �x

s bounded. 

emma 2 [36] . The discrete-time command filter is defined as: 

 i, 1 (k + 1) = z i, 1 (k) + �t ω n z i, 2 (k) , 

 i, 2 (k + 1) = z i, 2 (k) + �t [ −2ζω n z 2 (k) − ω n (z i, 1 (k) − αi (k))] , i = 1 , 2, 3 . (7)
2768 
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Fig. 1. Block diagram of the discrete-time CFFTC system for IMs. 
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here z i, 1 (k + 1) are the output signals of discrete-time command filter. If input sig-
als αi (k) satisfy | αi (k + 1) − αi (k) | ≤ � 1 and | αi (k + 2) − 2αi (k + 1) + αi (k) | ≤ � 2 for
ny k ≥ 1 , where � 1 and � 2 are positive constants and z i, 1 (0) = αi (0) , z i, 2 (0) = 0. Then
or any � > 0, there exists 0 < ζ ≤ 1 and ω n > 0, which ensure that | z i, 1 (k) − αi (k) | ≤ �,

z i, 1 (k) = | z i, 1 (k + 1) − z i, 1 (k) | are bounded. 

. Design for command filtered adaptive fuzzy fault-tolerant controller 

In this section, an adaptive fuzzy command filtered fault-tolerant controller for IMs discrete-
ime system with unknown load disturbances will be designed. The block diagram of the
iscrete-time CFFTC system system is exhibited in Fig. 1 . 

For the desired state signals ϕ 1 d (k) and ϕ 4d (k) , the tracking error variables are defined as:

 

 

 

 

 

 

 

 

 

 

 

e 1 (k) = ϕ 1 (k) − ϕ 1 d (k) , 

e 2 (k) = ϕ 2 (k) − ϕ 1 c (k) , 

e 3 (k) = ϕ 3 (k) − ϕ 2c (k) , 

e 4 (k) = ϕ 4 (k) − ϕ 4d (k) , 

e 5 (k) = ϕ 5 (k) − ϕ 3 c (k) . 

(8)

here ϕ 1 c (k) = z 1 , 1 (k ) , ϕ 2c (k ) = z 2, 1 (k) and ϕ 3 c (k) = z 3 , 1 (k) . Construct the compensated er-
or signals as νi 1 (k) = e i 1 (k) − ξi 1 (k) , ( i 1 = 1 , 2, 3 , 4, 5) , where ξi 1 (k) are the compensating
ignals. 

Step 1: The Lyapunov candidate is designed as V 1 (k) = 

1 
2 ν

2 
1 (k) . The first-order difference

f V 1 (k) is procured as: 

V 1 (k) = 

1 

2 

[ ϕ 1 (k) + �t ϕ 2 (k) − ϕ 1 d (k + 1) − ξ1 (k + 1)] 2 − 1 

2 

ν2 
1 (k) . (9)

Construct the virtual control law α1 (k) and the compensating signal ξ1 (k) as 

1 (k) = 

1 

�t 
[ ϕ 1 d (k + 1) − ϕ 1 (k) ] + t 1 ξ1 ( k) , (10)
2769 
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1 (k + 1) = �t [ ξ2 (k) + ϕ 1 c (k) − α1 (k) + t 1 ξ1 (k) ] , | t 1 | < 1 . (11)

Bringing Eqs. (10) and (11) into Eq. (9) attains: 

V 1 (k) = 

1 

2 

[ �t ( ϕ 2 (k) − α1 (k)) − ξ1 (k + 1)] 2 − 1 

2 

ν1 
2 (k ) = 

1 

2 

�2 
t ν

2 
2 (k ) −

1 

2 

ν2 
1 (k ) (12)

Step 2: The Lyapunov candidate is designed as V 2 (k) = V 1 (k ) + 

1 
2 ν

2 
2 (k ) . The first-order

ifference of V 2 (k) is procured as: 

V 2 (k) = 

1 

2 

[ ϕ 2 (k) + a 1 �t ϕ 3 (k ) ϕ 4 (k ) + a 2 �t T L − ϕ 1 c (k + 1) − ξ2 (k + 1)] 2 

+ �V 1 (k) − 1 

2 

ν2 
2 (k) . (13)

Construct the virtual control law α2 (k) and the compensating signal ξ2 (k) as: 

2 (k) = 

1 

a 1 �t ϕ 4 (k) 
[ ϕ 1 c (k + 1) − ϕ 2 (k) ] + t 2 ξ2 ( k) , (14)

2 (k + 1) = a 1 �t ϕ 4 (k ) [ ξ3 (k ) + ϕ 2c (k) − α2 (k) + t 2 ξ2 (k) ] , | t 2 | < 1 . (15)

emark 1. When the virtual control law is obtained via backstepping method without CFC
ethod, then α2 (k) will be given as: 

2 (k) = 

α1 (k + 1) − ϕ 2 (k) 

a 1 �t ϕ 4 ( k) 
(16)

here α2 (k) contains variable α1 (k + 1) = 

ϕ 1 d (k+2) −ϕ 1 (k+1) 

�t 
which covers future information

 1 (k + 1) . In [27] , the expression of variable α1 (k + 1) was obtained by the recursion formula,
hen α1 (k + 1) = 

ϕ 1 d (k+2) −ϕ 1 (k) −�t ϕ 2 (k) 

�t 
. However, the “complexity of computation” problem

rises as the order of the system gets higher because the actual controller contains more future
nformation, such as variable α1 (k + n − 1) = 

ϕ 1 d (k+ n) −ϕ 1 (k+ n−1) 

�t 
at Step n , which makes the

ontroller more complicated. In this paper, ϕ 1 c (k + 1) can be obtained by the command filters
nd the filtering error can be conquered, which alleviates the calculational burden. Thus, the
oncausal problem can be solved. 

For the practice IMs system, T L is unknown, fluctuant and bounded, then we assume that
 T L | ≤ d and d ≥ 0. Substituting Eqs. (14) and (15) into Eq. (13) gets: 

V 2 (k) ≤ 1 

2 

{
a 

2 
1 �

2 
t ϕ 

2 
4 (k)[(ν3 (k) + ξ3 (k) + ϕ 2c (k) − α2 (k) + t 2 ξ2 (k) − ξ2 (k + 1)] + a 2 �t T L 

}2 

+ �V 1 (k) − 1 

2 

ν2 
2 (k) 

≤ a 

2 
1 �

2 
t ϕ 

2 
4 (k) ν2 

3 (k) + �V 1 (k) − 1 

2 

ν2 
2 (k) + a 

2 
2 �

2 
t d 

2 . (17)

Step 3: The Lyapunov candidate is designed as V 3 (k) = V 2 (k ) + 

1 
2 ν

2 
3 (k ) . The first-order

ifference of V 3 (k) is procured as: 

V 3 (k) = 

1 

2 

[ b 5 �t ((1 − ρq ) u q (k) + p q (k)) + f 3 (k)] 2 + �V 2 (k) − 1 

2 

ν2 
3 (k) . (18)

here f 3 (k) = (1 + b 1 �t ) ϕ 3 (k) + b 2 �t ϕ 2 (k ) ϕ 4 (k ) − b 3 �t ϕ 2 (k ) ϕ 5 (k ) − b 4 �t 
ϕ 3 (k) ϕ 5 (k) 

ϕ 4 (k) 
−

 2c (k + 1) − ξ3 (k + 1) . 
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According to Lemma 2 , for any ε 3 > 0, there exists a FLS W 

T 
3 P 3 (z 3 (k) ) such that 

 3 (k) = 

f 3 (k) + b 5 �t p q (k) 

1 − ρq 
= W 

T 
3 P 3 (z 3 (k) ) + τ3 (19)

here x 3 (k) = [ ϕ 1 (k) , ϕ 2 (k) , ϕ 3 (k) , ϕ 4 (k) , ϕ 5 (k)] T , τ3 is the approximation error, and | τ3 | ≤
 3 . 

With ξ3 (k) = 0, the controller u q (k) and the adaptive law 

ˆ φ3 (k) are given as: 

 q (k) = − 1 

b 5 �t 

ˆ φ3 (k) ‖ P 3 (z 3 (k)) ‖ , (20)

ˆ 3 (k + 1) = 

ˆ φ3 (k) + γ3 ‖ P 3 (z 3 (k)) ‖ ν3 (k + 1) − δ3 ̂  φ3 (k) , (21)

here γ3 and δ3 are positive parameters. 
Define ‖ W 

T 
3 ‖ = φ3 , where φ3 is an unknown positive constant. Then, ˜ φ3 = φ3 − ˆ φ3 denotes

he estimate error, where ˆ φ3 is the estimation of φ3 . Substituting Eqs. (19) and (20) into Eq.
18) gets: 

V 3 (k) = 

1 

2 

[ (
1 − ρq 

) ˜ φ3 (k) ‖ P 3 ( z 3 (k) ) ‖ + 

(
1 − ρq 

)
τ3 

] 2 
+ �V 2 (k) − 1 

2 

ν2 
3 (k) 

≤ (1 − ρq ) 
2 ˜ φ2 

3 (k) ‖ P 3 (z 3 (k)) ‖ 2 + (1 − ρq ) 
2 ε 2 3 + �V 2 (k) − 1 

2 

ν2 
3 (k) . (22)

Step 4: The Lyapunov candidate is designed as V 4 (k) = V 3 (k ) + 

1 
2 ν

2 
4 (k ) . The first-order

ifference of V 4 (k) is procured as: 

V 4 (k) = 

1 

2 

[(1 + c 1 �t ) ϕ 4 (k) + b 4 �t ϕ 5 (k) − ϕ 4d (k + 1) − ξ4 (k + 1)] 2 + �V 3 (k) − 1 

2 

ν2 
4 (k) . 

(23)

Construct the virtual control law α3 (k) and the compensating signal ξ4 (k) as: 

3 (k) = 

1 

b 4 �t 
[ ϕ 4d (k + 1) − (1 + c 1 �t ) ϕ 4 (k) ] + t 4 ξ4 ( k) , (24)

4 (k + 1) = b 4 �t [ ξ5 (k) + ϕ 3 c (k) − α3 (k) + t 4 ξ4 (k)] , | t 4 | < 1 . (25)

Bringing Eqs. (24) and (25) into Eq. (23) attains: 

V 4 (k) = 

1 

2 

b 

2 
4 �

2 
t ν

2 
5 (k) + �V 3 (k) − 1 

2 

ν2 
4 (k) . (26)

Step 5: The Lyapunov candidate is designed as V 5 (k) = V 4 (k ) + 

M 

2 ν
2 
5 (k ) . The first-order

ifference of V 5 (k) is procured as: 

V 5 (k) = 

M 

2 

[ b 5 �t ((1 − ρd ) u d (k) + p d (k)) + f 5 (k)] 2 + �V 4 (k) − M 

2 

e 2 3 (k) , (27)

here f 5 (k) = (1 + b 1 �t ) ϕ 5 (k) + c 2 �t ϕ 4 (k) + b 4 �t 
ϕ 2 3 (k) 

ϕ 4 (k) 
+ b 3 �t ϕ 2 (k ) ϕ 3 (k ) − ϕ 3 c (k + 1) −

5 (k + 1) . 
According to Lemma 2 , for any ε 5 > 0, there exists a FLS W 

T 
5 P 5 (z 5 (k) ) such that 

 5 (k) = 

f 5 (k) + b 5 �t p d (k) 

1 − ρd 
= W 

T 
5 P 5 (z 5 (k) ) + τ5 , (28)
2771 
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here x 5 (k) = [ ϕ 1 (k) , ϕ 2 (k) , ϕ 3 (k) , ϕ 4 (k) , ϕ 5 (k)] T , τ5 is the approximation error, and | τ5 | ≤
 5 . 

With ξ5 (k) = 0, the controller u d (k) and the adaptive law 

ˆ φ5 (k) are given as: 

 d (k) = − 1 

b 5 �t 

ˆ φ5 (k) ‖ P 5 (z 5 (k)) ‖ , (29)

ˆ 5 (k + 1) = 

ˆ φ5 (k) + γ5 ‖ P 5 (z 5 (k)) ‖ ν5 (k + 1) − δ5 ̂  φ5 (k) . (30)

here γ5 and δ5 are positive parameters. 
Define ‖ W 

T 
5 ‖ = φ5 , where φ5 is an unknown positive constant. Then, ˜ φ5 = φ5 − ˆ φ5 denotes

he estimate error, where ˆ φ5 is the estimation of φ5 . Substituting Eqs. (28) and (29) into Eq.
27) gets: 

V 5 (k) = 

M 

2 

[ 
( 1 − ρd ) ̃  φ5 (k) ‖ P 5 ( z 5 (k) ) ‖ + ( 1 − ρd ) τ5 

] 2 
+ �V 4 (k) − M 

2 

e 2 5 (k) 

≤ −M 

2 

ν2 
5 (k) −1 

2 

ν2 
4 (k) −1 

2 

ν2 
3 (k) − 1 

2 

ν2 
2 (k) − 1 

2 

ν2 
1 (k) + M (1 − ρd ) 

2 ˜ φ2 
5 (k) ‖ P 5 (z 5 (k)) ‖ 2 

+ M(1 − ρd ) 
2 ε 2 5 + (1 − ρq ) 

2 ˜ φ2 
3 (k) ‖ P 3 (z 3 (k)) ‖ 2 + (1 − ρq ) 

2 ε 2 3 + 

1 

2 

b 

2 
4 �

2 
t ν

2 
5 (k) 

+ a 

2 
1 �

2 
t ϕ 

2 
4 (k) ν3 (k) + 

1 

2 

�2 
t ν

2 
2 (k) + a 

2 
2 �

2 
t d 

2 . (31)

heorem 1. Consider the IMs discrete-time system (6) with Assumptions 1-2, the desired
ignals ϕ 1 d (k) and ϕ 4d (k) . If the virtual control laws are given as (10), (14) and (24), the
daptive laws are constructed as (21) and (30), then we design the fault-tolerant controllers
20) and (29) such that all closed-loop signals are semi-globally uniformly ultimately bounded
SGUUB) and the tracking error e 1 (k) converges to a small neighborhood of the origin. 

. Stability analysis 

roof. The Lyapunov function is chosen as: 

 (k) = V 5 (k ) + 

1 

2γ3 

˜ φ2 
3 (k ) + 

M 

2γ5 

˜ φ2 
5 (k ) . (32)

The first-order difference of V (k) is procured as: 

V (k) = �V 5 (k) + 

1 

2γ3 
[ ̃  φ2 

3 (k + 1) − ˜ φ2 
3 (k)] + 

M 

2γ5 
[ ̃  φ2 

5 (k + 1) − ˜ φ2 
5 (k)] . (33)

According to 

˜ φi 2 (k + 1) = 

ˆ φi 2 − φi 2 (k + 1) , ( i 2 = 3 , 5) attains: 

˜ 2 
i 2 (k + 1) − ˜ φ2 

i 2 (k) = φ2 
i 2 − ˜ φ2 

i 2 (k) + (1 − δi 2 ) 
2 ˆ φ2 

i 2 (k) − 2(1 − δi 2 ) φi 2 
ˆ φi 2 (k) 

+ 2(1 − δi 2 ) γi 2 ‖ P i 2 (z i 2 (k)) ‖ νi 2 (k + 1) ̂  φi 2 (k) 

− 2γi 2 ‖ P i 2 (z i 2 (k)) ‖ νi 2 (k + 1) φi 2 

+ γ 2 
i 2 ‖ P i 2 (z i 2 (k)) ‖ 2 ν2 

i 2 (k + 1) . (34)
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γ

−  

φ

 

φ

 

 

(

�  

 

w

β

β  

 

i  

4

a  

t  

1  

e

Using ‖ P i 2 (z i 2 (k)) ‖ ≤ l i 2 , ( i 2 = 3 , 5) and invoking Young’s inequality, we have: 

γi 2 ‖ P i 2 (z i 2 (k)) ‖ νi 2 (k + 1) ̂  φi 2 (k) ≤ γ 2 
i 2 ν

2 
i 2 (k + 1) l i 2 + 

ˆ φ2 
i 2 (k) , 

2γi 2 ‖ P i 2 (z i 2 (k)) ‖ νi 2 (k + 1) φi 2 ≤ ν2 
i 2 (k + 1) l i 2 + φ2 

i 2 , 

2 
i 2 ‖ P i 2 (z i 2 (k)) ‖ 2 ν2 

i 2 (k + 1) ≤ γ 2 
i 2 ν

2 
i 2 (k + 1) l i 2 , 

2φi 2 
ˆ φi 2 (k) ≤ ˆ φ2 

i 2 (k) + φ2 
i 2 . (35)

Substituting Eq. (35) into 

˜ φ2 
i 2 (k + 1) − ˜ φ2 

i 2 (k) , ( i 2 = 3 , 5) attains: 

˜ 2 
3 (k + 1) − ˜ φ2 

3 (k) ≤ (1 − ρq ) 
2 
(
4γ 2 

3 l 3 − 2γ 2 
3 δ3 l 3 + 2γ3 l 3 

)
ε 2 3 + ( γ3 − δ3 + 2 ) φ2 

3 

+ (1 −ρq ) 
2 (4γ 2 

3 l 
2 
3 −2γ 2 

3 δ3 l 
2 
3 + 2γ3 l 

2 
3 − 1 

) ˜ φ2 
3 (k) + 

(
δ2 

3 − 4δ3 + 3 

) ˆ φ2 
3 (k) , 

(36)

˜ 2 
5 (k + 1) − ˜ φ2 

5 (k) ≤ (1 − ρd ) 
2 
(
4γ 2 

5 l 5 − 2γ 2 
5 δ5 l 5 + 2γ5 l 5 

)
ε 2 5 + ( γ5 − δ5 + 2 ) φ2 

5 

+ (1 −ρd ) 
2 
(
4γ 2 

5 l 
2 
5 −2γ 2 

5 δ5 l 
2 
5 + 2γ5 l 

2 
5 − 1 

) ˜ φ2 
5 (k) + 

(
δ2 

5 − 4δ5 + 3 

) ˆ φ2 
5 (k) . 

(37)

Define ϕ 

2 
4 (k) ≤ A, where A > 0 is a constant. Substituting Eqs. (36) and (37) into Eq.

33) , we can obtain: 

V ≤
(

1 

2 

b 

2 
4 �

2 
t −

M 

2 

)
ν2 

5 (k) − 1 

2 

ν2 
4 (k) + 

(
a 

2 
1 �

2 
t A − 1 

2 

)
ν2 

3 (k) + 

(
1 

2 

�2 
t −

1 

2 

)
ν2 

2 (k) − 1 

2 

ν2 
1 (k)

+ 

1 

2γ3 
[(δ2 

3 − 4δ3 + 3) ̂  φ2 
3 (k) + β3 + (1 − ρq ) 

2 (4γ 2 
3 l 

2 
3 − 2γ 2 

3 δ3 l 
2 
3 + 2γ3 l 

2 
3 

+ 2γ3 l 3 − 1) ̃  φ2 
3 (k)] 

+ 

M 

2γ5 
[(δ2 

5 − 4δ5 + 3) ̂  φ2 
5 (k) + β5 + (1 − ρd ) 

2 (4γ 2 
5 l 

2 
5 − 2γ 2 

5 δ5 l 
2 
5 

+ 2γ5 l 
2 
5 + 2γ5 l 5 − 1) ̃  φ2 

5 (k)] , (38)

here 

3 = (γ3 − δ3 + 2) φ2 
3 + γ3 a 

2 
2 �

2 
t d 

2 + (1 − ρq ) 
2 (4γ 2 

3 l 3 − 2γ 2 
3 δ3 l 3 + 2γ3 l 3 + 2γ3 ) ε 

2 
3 , 

5 = (γ5 − δ5 + 2) φ2 
5 + 

γ5 

M 

a 

2 
2 �

2 
t d 

2 + (1 − ρd ) 
2 (4γ 2 

5 l 5 − 2γ 2 
5 δ5 l 5 + 2γ5 l 5 + 2γ5 ) ε 

2 
5 . (39)

Selecting design parameters �t , M, ζ , ω n , γ3 , γ5 , δ3 and δ5 , the following inequal-
ties are satisfied: �2 

t − 1 
2 < 0, 1 

2 b 

2 
4 �

2 
t − M 

2 < 0, a 

2 
1 �

2 
t A − 1 

2 < 0, δ2 
j − 4δ j + 3 < 0 and

γ 2 
j l 

2 
j − 2γ 2 

j δ j l 2 j + 2γ j l 2 j + 2γ j l j − 1 < 0, ( j = 3 , 5) . Once the error | ν3 (k) | > 

√ 

β3 

γ3 −2γ3 a 2 1 �
2 
t A 

nd | ν5 (k) | > 

√ 

Mβ5 

Mγ5 −γ5 b 2 4 �
2 
t 
, it can be attained that �V (k) ≤ 0. Then lim 

k→∞ 

‖ ν1 (k) ‖ ≤ σ is ob-

ained, where σ < 0 is a sufficiently small constant. We assume that ϕ i 3 c (k) − αi 3 (k) , ( i 3 =
 , 2, 3) are bounded, thus the compensating signals ξi 1 (k) , (i 1 = 1 , 2, 3 , 4, 5) and the tracking
rror e (k) are bounded [38] . Finally, the SGUUB of the closed-loop system is guaranteed. �
1 
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Table 2 
The parameters of IMs. 

J = 0. 0586 Kg · m 

2 R s = 0. 1 � R r = 0. 15 �

L m = 0. 068 H L s = 0. 0699 H L r = 0. 0699 H

5

 

m  

a
 

a  

ϕ

ρ

 

c
 

r  

0  

s  

m
 

(  

a
 

f  

a  

0  

s
 

(  

a
 

F  

w  

F  

n  

i

. Simulation results 

In this section, four cases are carried out to verifying the effectiveness of the CFFTC
ethod proposed in this paper. The motor and load parameters in the IMs model considering

ctuator faults and load disturbances are expressed in Table 2 : 
Select the sampling period as �t = 0. 0025s . The initial values for system (6) are defined

s ϕ 1 (0) = ϕ 2 (0) = ϕ 3 (0) = ϕ 5 (0) = 0 and ϕ 4 (0) = 1 . The reference signals are chosen as
 1 d (k) = sin (�t kπ/ 2) and ϕ 4d (k) = 1 . The actuator faults are given as: 

q = 

{
0, 0 ≤ k < 4000 

0. 6 , k ≥ 4000 

, ρd = 

{
0, 0 ≤ k < 4000 

0. 3 , k ≥ 4000 

, 

p q (k) = 

{
0, 0 ≤ k < 4000 

sin ( �t k π
2 ) , k ≥ 4000 

, p d (k) = 

{
0, 0 ≤ k < 4000 

0. 25 cos ( �t k π
2 ) , k ≥ 4000 

. 

The following four cases are implemented to illustrate the performance of the proposed
ontroller. 

Case(a): First, the proposed CFFTC method is applied to IMs, and we give the design pa-
ameters as ζ = 0. 25 , ω n = 230, γ3 = 0. 0175 , γ5 = 0. 25 , δ3 = 1 . 25 , δ5 = 1 . 25 , t 1 = t 2 = t 4 =
. 9 . The load parameter is selected as: T L = 

{
1 . 0 N · m, 0 ≤ k < 2000, 

1 . 5 N · m, k ≥ 2000. 
. The fuzzy member-

hip functions are choosen as follows: μF m n 
= exp 

[ 
−(ϕ n + h) 2 

2 

] 
, (n = 1 , 2, 3 , 4, 5) , where integer

 ∈ [1 , 11] and integer h ∈ [ −5 , 5] . 
Case(b): Next, for comparison with Case(a), the discrete-time command filtered control

CFC) method without FTC is also applied to IMs, and the same design parameters as Case(a)
re chosen. 

Case(c): Then, to further illustrates the superiority of the proposed method, the adaptive
uzzy fault-tolerant dynamic surface control (FTDSC) method in [37] is applied to IMs for
nother comparison. The design parameters are selected as ζ1 = 0. 0012, ζ2 = 0. 00074, ζ3 =
. 0012, γ3 = 0. 023 , γ5 = 0. 25 , δ3 = 1 . 25 , δ5 = 1 . 75 , where ζ1 , ζ2 and ζ3 are the time con-
tants of dynamic surface filter. And other parameters are chosen the same as Part (a). 

Case(d): Finally, for comparison with Case(c), the discrete-time dynamic surface control
DSC) method without FTC is also applied to IMs, and the same design parameters Case(c)
re chosen. 

The simulation comparison results of the above four cases are illustrate in Figs. 2–8 .
igs. 2 (a)- 8 (a) reflect the results of the control scheme with CFC in the Case(a) and Case(b),
hile Figs. 2 (b)–8 (b) show the results with DSC in the Case(c) and Case(d). Fig. 2 (a) and
ig. 2 (b) show the tracking trajectories of ϕ 1 (k) and the desired trajectory ϕ 1 d (k) . Fig. 3 de-
otes the tracking error e 1 (k) . Figs. 5 –8 show the trajectories of u q (k) , u d (k) , i q (k) and
 d (k) , which illustrate the effectiveness of the CFFTC method proposed in this paper. 
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Fig. 2. (a) Trajectory of the ϕ 1 with CFC. (b) Trajectory of the ϕ 1 with DSC. 

Fig. 3. (a) Tracking error e 1 with CFC. (b) Tracking error e 1 with DSC. 

Fig. 4. (a) Trajectory of the ϕ 4 with CFC. (b) Trajectory of the ϕ 4 with DSC. 
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Fig. 5. (a) u q with CFC. (b) u q with DSC. 

Fig. 6. (a) u d with CFC. (b) u d with DSC. 

Fig. 7. (a) i q with CFC. (b) i q with DSC. 
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Fig. 8. (a) i d with CFC. (b) i d with DSC. 
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emark 2. In the simulation, a load torque disturbance appearing when k = 2000, T L changes
rom 1.0 to 1.5. When k ≥ 4000 steps, two types of actuator faults are taken into account
o express the availability of the proposed scheme. Simulation confirms that the FTC method
roposed in Case(a) and Case(c) achieves the good tracking performance in the presence of
ctuator faults, compared with non-FTC method in Case(b) and Case(d). 

emark 3. From the simulation results of Case(a) and Case(c), it can be seen that both
TC methods can satisfy control effects. However, Figs. 2 –4 show that the CFFTC method
onstructed in Case(a) can make the rotor position ϕ 1 (k) and flux linkage ϕ 4 (k) track the
eference signals ϕ 1 d (k) and ϕ 4d (k) with less adjustment time and smaller tracking error than
hose in Case (c). 

emark 4. Note that the proposed discrete-time CFFTC method achieves a good tracking
erformance since the saturation and iron losses in the motor are not considered and some
equired inequalities are satisfied. For all that, this work just obtains some preliminary results,
nd we will consider how to reduce the aforementioned restrictions. Besides, the switching
ontrol method provided an efficacious tool to deal with load torque mutation in the IMs driver
ystem. Consequently, it is of crucial practical significance to extend the obtained works to
he discrete-time case. In future research activities, we will take account of the influence of
ron losses and the effective combination of switching control technique [39–43] and FTC
ethod. 

. Conclusion 

In this paper, a CFFTC method for IMs in the presence of possible actuator faults and
nknown load disturbances is proposed. The actuator faults considered in this paper include
oss of effectiveness and bias. Combining CFC technology and error compensation mechanism,
oncausal problem and complexity of computation can be resolved. It is proved that all signals
n the closed-loop system are SGUUB. The simulation results demonstrate the validity of
he proposed fault-tolerant method for IMs system. Future works will be committed to take
ccount of the influence of iron losses and the effective combination of switching control
echnique and FTC method. 
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